

Moving towards a sustainable world

GSEC Ltd. Barbados

Paving the way for renewable electricity in Barbados

Prof. Dr. Olav Hohmeyer Director Global Sustainable Energy Consultants, Barbados

Structure of the Presentation

- The task
- Stable Pricing for RE
- Supply modes for RE
- Market structure and liberalisation
- Pricing RE and stakeholder objectives
- Choice of pricing mechanism
- Suggestion of a tailor made FIT system for Barbados
 - Design elements of the new FIT system
 - Assumptions
 - Suggested first price points
- Possible target scenarios for steering the FIT system
- Discussion

- Develop a sustainable market structure for electricity from renewable sources for Barbados
- Concerns:
 - Pricing of renewable electricity
 - Supply modes for renewable electricity
 - Electricity market structure
 - Appropriate model for electricity market liberalisation

- Develop a pricing mechanism for renewable energy technologies
- The mechanism needs to establish a stable price regime for a competitive supply of affordable electricity
- Needs to be part of a sustainable market structure for electricity
- Recommend first price points
- Develop mechanisms for price adjustments for current technologies

Pricing of Renewable Energy

- Needs to discuss RE support mechanisms like:
 - Net metering
 - Net billing
 - Renewable energy rider (RER)
 - Feed-in tariff (FIT)
 - Auctioning
 - Renewable portfolio standards (RPS)
- Needs to analyse the cost situation of RE to derive first price points

Supply Modes for Renewable Electricity

- Develop a sustainable supply mode for electricity from renewable sources for Barbados
- Give recommendations for policies to establish an equitable, safe and affordable supply of renewable electricity
- Possible supply modes discussed:
 - guaranteed priority market access
 - buy-all/sell-all
 - net metering or net billing
 - wheeling of renewable electricity
 - banking of renewable electricity
 - renewable electricity certificates
 - combinations of some modes and mechanisms

- Does the present market structure need to be liberalised to support the increasing number of (RE) electricity suppliers?
- How does the suggested support mechanism for renewable electricity connect to the overall market structure?
- What is the stage of liberalisation reached?
- Is a further liberalisation possible?
- Is a further liberalisation needed?
- Give policy recommendations for a sustained liberalised electricity market

	Power flow		
	Control flow		
oving towards a :	Prof Dr. Olay Habmavar	Draft final report	

sation

GSEC Ltd. **Barbados**

Prof	Dr	Olav	Hohmever	
1101.	$\boldsymbol{\nu}$	Olav	riornicyci	

Draft final report

Page 231 of 269

- The degree of market liberalisation is already high in Barbados
- Seven out of nine steps have already been achieved \bullet
- Only legal vertical unbundling of BL&P into 'BL&P Generation' and 'BL&P Grid and System Operation' can be recommended

	State of liberalisation	Short characterisation	Status in Barbados
1	Corporatisation	Transformation of the utility into a separate legal entity	Achieved
2	Commercialisation	Cost recovering prices etc.	Achieved
3	Passage of requisite legislation	Provides legal framework for restructuring and private ownership	Achieved
4	Establishment of independent regulator	Aims to introduce transparency, efficiency and fairness in the management of the sector	Achieved
5	Independent power producers (IPPs)	Introduce new private investment in generation with long-term power purchase agreements (PPAs)	Legally achieved
6	Restructuring	Involves horizontal and/or vertical unbundling of the incumbent (state-owned) utility as preparation for privatisation	Not achieved
7	Divesture of generation assets	Divests state ownership of generation assets to the private sector	Achieved
8	Divesture of distribution assets	Divests state ownership of distribution assets to the private sector	Achieved
9	Competition	Introduces wholesale and retail markets for electricitv	Not achieved

GSEC Ltd. **Barbados**

Prof. Dr. Olav Hohmeyer

Draft final report

Page 140 of 264 Barbados has all legal provisions for independent power producers of conventional and renewable electricity

> Present theoretical structure of Barbados power supply system (own graphical representation)

Present factual structure of Barbados power supply system (own graphical representation)

Source: GSEC Ltd. 2017, p. 140

GSEC Ltd.

Barbados

No Market for Conventional Generation IPPs

GSEC Ltd. **Barbados**

Conventional power production is not economically attractive for IPPs in Barbados due to small market size and high efficiency of existing equipment

Merit order and system load of Barbados' power supply in 2016 (based on heat rates of

generators, used fuels and international fuel prices in April 2017)

Merit order and system load of Barbados' power supply plus two new 30 MW IPPs No sufficient margin to finance investment MW ← Minimum load at night → 100 150 200 250 - Reserve capacity -

Source: GSEC Ltd. 2017, p. 140

BBD/kWh

Barbados' merit order with two additional IPP generators of 30 MW each

Vertical Legal Unbundling Could Work

GSEC Ltd. Barbados

- A legal vertical unbundling of BL&P is suggested for the future into:
 - BL&P Generation and
 - BL&P Grid and System Operation (acting as single buyer)

Control flow

Prof. Dr. Olav Hohmeyer

Draft final report

The Results on RE Policy: Objectives Prof. Dr. Olav Hohmeyer Draft final report

Page 245 of 264 GSEC Ltd.

Page 249 Grages

Page 171 of 264

First stakeholders were interviewed on their views on the most important objectives for Barbados' energy policy

	Objectives	Frequency at which the objective was mentioned	Average weight attached to objective	Relative importance of objective (Frequency x average weight)
1	Reliability of power supply (loss of load d/a)	12	9.8	117.0
2	Low environmental impact	12	7.6	91.0
3	Low cost of power	12	7.4	89.0
4	High employment generation	11	7.5	83.0
5	Reduktion of imports / hard currency	10	7.8	78.0
6	Public acceptance of power supply	8	8.4	67.0
7	Reduction of imports / energy security	7	8.7	61.0
8	General participation (every household)	5	8.6	43.0
9	Hurricane resiliance	4	8.3	33.0
10	Local participation	4	8.0	32.0
11	Domestic ownership	4	6.8	27.0
12	Problems of agriculture need to be solved	3	9.0	27.0
13	Stable electricity rates	3	8.0	24.0

15 Reliable long term policy

2

2

Source: GSEC Ltd. 2017, p.245

vision Global Sustainable Energy Consultants Ltd. (GSEC), Barbados

16 Storage must be incentivised

9.5

13

20.0

19.0

The Match of Pricing Policies and Objectives

GSEC Ltd. Barbados

Prof. Dr. Olav Hohmeyer

Draft final report

Page 165 of 264

Possible market structures/support mechanisms have been discussed in view of the most important objectives

	Relative	Support mechanisms						
Priority	importance of objective	B	arbados toda	у	Options for the future			
objectives	(Score, max. 120)	RER	FTC fixed tariffs	Single PPAs	Net metering	FIT	RPS	Auctioning
Applicable to Barbados								
Administrative effort necessary								
Reliability of power supply (loss of load d/a)	117.0							
Low environmental impact	91.0							
Low cost of power	89.0							
High employment generation	83.0							
Reduktion of imports / hard currency	78.0							
Public acceptance of power supply	67.0							
Reduction of imports / energy security	61.0							
General participation (every household)	43.0							
Hurricane resiliance	33.0							
Local participation	32.0							
Domestic ownership	27.0							
Problems of agriculture need to be solved	27.0							

- Market to small for RPS and unstable prices
- Auctioning needs international investors
- Original RER is too expensive and has unstable prices
- Fixed RER too expensive
- Single PPAs don't function with monopoly
- Net metering too expensive
- Feed-in Tariffs fit the country

best

The Results on RE Pricing

- The total market size of Barbados' electricity market limits the choices substantially
 - Renewable portfolio standards and renewable energy certificates can not be introduced due to market size
 - Auctioning would require substantial international participation in the bidding process and would risk low benefits for Barbados' economy
- Unlimited net metering would risk a non equitable distribution of electricity system costs at the expense of the poorest ratepayers
- Non dynamic mechanisms don't capture cost reduction potential of renewable energy sources (fixed RER rates)
- Non cost based mechanisms risk highly unstable prices for renewable energy sources and electricity costs to consumers (old RER or unlimited net metering)
- The most appropriate market structure/support mechanism for Barbados is a differentiated dynamic Feed-in tariff (FIT) system

- Detailed recommendations for the structure of the FIT system have been developed
- Based on an assessment of national and international cost data first price points/tariffs for the FIT system have been suggested for:
 - Solar PV
 - Onshore wind energy
 - Bagasse combustion
 - King-Grass gasification
 - Biogas from manure and agricultural residues
 - Waste to energy

Design of Suggested FIT System (1)

GSEC Ltd. Page 173 B204 rbados

- Based on generation costs
- Differentiated by:
 - technology
 - fuel type
 - resource quality
 - location
- Dynamic tariff degression
- Indexed tariff degression
- Responsive tariff degression
- Inflation adjustment
- Front-end loading
- Residual load responsive
- Bonus for community ownership
- Ownership by impact
- Long term guaranteed tariff
- Payment in BBD
- Limited net metering

Design options		Possible choices	Choice for Barbados			
	Design options	FIT Payment choices				
1	Prices setting based on	 Cost of generation Value of generation / avoided cost Fixed price incentive Auction based price discovery 	Cost of generation			
2	Payment differentiation by	Technology	Yes (wind, biomass, waste to energy, storage)			
3		Fuel type (biomass)	Yes (biomass: bagasse, syngas from gasification)			
4		Project size	Yes (PV, biomass)			
5		Resource quality	Yes (wind, PV)			
6		Location (roof top, facade, ground mounted)	Yes (PV: roof top or ground mounted)			
7	Ancillary design elements	Pre-established tariff degression	Yes (wind, PV, biomass)			
8		Indexed tariff degression (international cost development)	Yes (PV, wind, storage)			
9		Responsive tariff degression	Yes (PV, wind, biomass, storage)			
10		Inflation adjustment (O&M and fuel costs)	Yes (O&M for wind, PV, storage and waste to energy; fuel costs for biomass)			
11		Front-end loading	Yes (PV, wind, biomass, storage)			
12		Time of delivery (dispatchable production)	Yes, eventually (for biomass and waste to energy)			
13	Further differentiation (bonus)	Bonus for community ownership	Yes (wind, PV)			
14		Ownership by impact (proximity to wind turbines) Yes (wind energy, up to 10% investment cost)				
15	Payment duration	Short, medium and long term	Long term (20 years plus x)			
16	Payment currency	BBD / USD	BBD			
17	Net metering	Yes / No. Capacity limits are possible. Limitation to certain customer groups is possible.	Yes (PV with a capacity limit of 1 kWp and and a limit to 25% of all households (lowest income quarter)			

Design of Suggested FIT System (2)

Draft final report

Prof. Dr. Olav Hohmeyer

Prof. Dr. Olav Hohmeyer

Draft final report

Page 185 of 269

GSEC Ltd.

- All technologies, sizes, owners and locations eligible
- Priority access of RE to grid within technical limits
- Grid operator purchases all lacksquare
- Automatic tariff adjustments
- FIT policy review every four years
- Caps per grid section due to technical limits
- Plans and timelines for removing technical limits published with caps
- Priority dispatch of RE within technical limits
- Super shallow interconnection cost allocation

Design options		Possible choices	Choice for Barbados		
		Implementation options			
18	Eligibility	All technologies, possible operators, sizes and locations can be eligible or eligibility can be restricted.	All RE technologies, all owners, all sizes, all locations (based on location specific caps)		
19	Purchase obligation / Interconnection guarantee	Yes/No	Yes, within the technical limits BL&P has to buy		
20	Purchasing entity	Utility company, grid operator, government	Grid operator (BL&P)		
21	FIT policy adjustment	Yes / No. Adjustment of FIT payment levels or of FIT program	Adjustment of payment levels (every two or three years) in addition to automatic degression After five years a revision of the overall policy should be considered in the light of the lessons learned (without endangering investor trust in the policy).		
22	Caps Capacity cap, project size cap, cap to program cost		Technical caps for every grid section. Grid operator has to remove technical limits as planned and agreed with the Energy Division. In the planning of the transition pathway the cost to the ratepayer should be analyzed in advance in order to limit rate increases above the average rate development under conventional electricity production.		
23	Interconnection priority for RE	Yes / No	Yes (within the limits set by the caps, otherwise queuing until technical limit has been removed)		
24	Dispatch priority for RE	Yes / No	Yes, to the extent possible		
25	Obligation for production forecast	Yes / No (for larger installations)	No, much cheaper to do for entire system		
26	Transmission and interconnection cost allocation	 Super shallow (no connection cost) Shallow (connection cost to the nearest transmission point) Deep (All cost for grid connection including transmission and substation upgrades) Mixed (connection cost plus some share of transmission and substation upgrade) 	Super shallow for systems up to 100kW. (No connection cost paid by RE operator.) and shallow for system larger than 100kW. (Connection cost to the nearest transmission point paid by RE operator.)		

Design of Suggested FIT System (3)

GSEC Ltd. Barbados

- Transparency as key to success
- All information on the internet, updated daily:
 - connected capacities
 - RE power production
 - planned RE capacities by target years
 - available RE connection capacities per grid area
 - caps and actual queues plans on increasing connection capacities
 - timelines for relevant technical improvements
 - all relevant information on FIT calculations
- Agriculture friendly FIT
 - FIT for bagasse
 - FIT for King Grass gasification
 - FIT for biogas from manure and residues

Design entions		Possible choices	Choice for Barbados		
Design options		Implementation options			
28	Inter-utility cost sharing	Yes / No (In the case of more than one utility cost increases are shared between them)	Does not apply to Barbados		
29	Transparency	Different levels of transparency in FIT calculations, cap setting, actual installed capacities, capacities in application.	All relevant information on FIT calculations, cap setting, actual installed capacities, actual RE output, capacities in application procedures, planned grid upgrades, available capacities under local caps and other relevant information needs to be made available on a daily basis on the internet accessible for every potential investor		
30	Agriculture friendly	Yes / No (FIT tariff setting takes into account the special challenges for the agricultural sector and incorporates such considerations into the making of the FIT structure and rates)	Yes. Special FITs are payed for biomass to contribute to the solution of the agricultural challenges faced by Barbados		

Design of Suggested FIT System (4)

GSEC.Lt.d. Barbados

- Guaranteed duration 20 years
- Front loaded for 10 years (loan pay-back time)
- Automatic digression (2.4%/a for PV)
- Capacity corridor (needs to be agreed for each RE technology)
- Increase of FIT by each 10% underachievement of target corridor (to be discussed)
- Decrease of FIT by each 10% overachievement of target corridor (to be discussed)

	Size range in kW	Initial FIT rates		Guarant		Capacity	Increase	Decrease
		Phase I	Phase II	ee period	Annual reduction	target corridor	under- achieve- ment	by over- achieve- ment
Technology		Duration in years for reference site	Duration in years for reference site	in years	in %	in MW/a	in % per 10%	in % per 10%
	1-10	10	10	20	2.4 %		1 %	1 %
DV reef	10-100	10	10	20	2.4 %	5 40	1 %	1 %
PV 1001	100-1,000	10	10	20	2.4 %	5 - 10	1 %	1 %
	> 1,000	10	10	20	2.4 %		1 %	1 %
PV ground m	ounted	10	10	20	2.4 %	5 - 10	1 %	1 %
Wind	Investor owned	10	10	20	0 %	0 - 20	?	?
	Community owned	10	10	20	0 %		?	?
	0-75	20	0	20	0 %	?	?	?
	75-150	20	0	20	0 %	?	?	?
Biogas from manure	150-500	20	0	20	0 %	?	?	?
	500-5,000	20	0	20	0 %	?	?	?
	> 5000	20	0	20	0 %	?	?	?
Biomass gas	ification	10	10	20	0 %	?	?	?
Solid biomas combustion	S	10	10	20	0 %	none	none	none
Solid waste combustion		10	10	20	0 %	?	?	?

General Assumptions for FIT System

Prof. Dr. Olav Hohmeyer	Draft final report	Page 193 of 264
Prof. Dr. Olav Hohmeyer	Draft final report	Page 197 of 269

- Share of debt financing: 60% /
- Interest on debt:
- Return on equity before tax:
- Income tax rate applied:
- Return on equity after tax:
- Total guarantee period:
- Duration of first high FIT:

0% / 70% / 80%
4% / 5% / 6%
6% / 8% / 10%
25%
4.5% / 6% / 8%
20 years
10 years

Parameter	Unit	Assumed value	Reason for the assumed value
Duration of loan	years	10	Low risk loans are available for at least 10 years duration in Barbados
Share of loan financing	%	60 / 70 / 80	Highest possible share of low interest loan allows lowest financing costs
Interest rate on loan	%/a	4 / 5 / 6	Low risk loans have been seen in this range in Barbados for RE investments
Lenders fee	%	3	Taken from international literature (NREL). Needs Barbados specific adjustment.
Rate of return on equity (before income tax)	%/a	6/ 8 /10	Seems to be a reasonable to high range for low risk investments in Barbados
ncome tax rate	%	25	General income tax rate for Barbados
Rate of return on equity after tax	%/a	4.5 / 6 / 7.5	Is derived from rate before income tax minus 25% income tax
Total duration of guaranteed FIT payment	years	20	Based on most successful international FIT practices (e.g. Germany).
Duration of first payment period for reference plant (front loaded FITs)	years	10	Based on available loan duration for project financing.

Assumptions for PV FIT

80%

2,196kWh/m²

- Solar radiation:
- DC to AC efficiency:
- AC output per year: 1,757 kWh/kWp
- Investment per kWp (roof):
 - 1 to 10 kWp
 - 10 to 100 kWp
 - 100 to 1,000 kW_p
 - larger 1,000 kWp
 - ground mounted
 - O & M cost
 - Inverter replacement:
 - Inverter cost:
 - Useful project life:

6,000 BBD/kW _p
5,332 BBD/kWp
3,838 BBD/kWp
3,118 BBD/kWp
3,118 BBD/kWp
34 BBD/kW _p *a
10 years
470 BBD/kWp
25-40 years

Parameter	Unit	Assumed value	Reason for the assumed value
olar radiation per year	kWh/m ² *a	2,196	Average radiation on a horizontal surface in Barbados
V DC to AC system fficiency	%	80 %	Average operating temperature assumed at 62.5°C with output reduction of 0.4%/1°C temperature increase over 25°C design temperature. 98% inverter efficiency assumed
utput (AC to grid) per ear	kWh/kWp	1,757	Resulting from solar radiation and AC system efficiency
apacity factor (AC)	%	20.1 %	Resulting from AC output
nvestment cost per kW _p			
roof up to 10 kW _p	BBD/kWp	7,300	Based on Barbados cost figures for 2015 and 2016
roof 10.1 to 100 kW _p	BBD/kWp	6,497	Based on Barbados cost figures for small systems times NREL (2016a) ratio for larger size (89%)
roof 100.1 to 1,000 kW _₽	BBD/kWp	4,672	Based on Barbados cost figures for small systems times NREL (2016a) ratio for larger size (64%)
roof larger 1,000 kW _P	BBD/kWp	3,796	Based on Barbados cost figures for small systems times NREL (2016a) ratio for larger size (52%)
ground mounted PV	BBD/kWp	3,796	Based on Barbados cost figures for small systems times NREL (2016a) ratio for larger size (52%)
peration and naintenance cost	BBD/kW _p *a	34	Based on NREL 2013 (17 USD/kWp*a)
uration till first partial quipment replacement	years	10	Assumed replacement of inverter after 10 years
ost of first partial quipment replacement	BBD/kWp	470 BBD	Assumed cost for inverter replacement based on NREL 2016a (235 USD/kW_p) $% \left(\frac{1}{2} \right) = 0$
uration till second artial equipment eplacement	years	20	Assumed second inverter replacement after 20 years
ost of second partial quipment replacement	BBD/kWp	470 BBD	Assumed cost for inverter replacement based on NREL 2013 (235 USD/kWp) $$
seful life of project	years	25 - 40	International experience with lifetime of PV plants operating (NREL 2017)
		So	urce: GSEC Ltd. 2017, p.197

First Price Points for PV FIT

GSEC Ltd.
Barbados

System	Average FIT rate over the entire period	FIT rate period 1 (year 1-10) in BBD/ kWh	FIT rate period 2 (63% of period 1 for year 11-20)	Assumed investment cost in BBD/kWp	Share of equity assumed	Assumed interest on debt financing	Interest earned on equity in %
PV rooftop							
1-10 kW _p	0.4014	0.4925	0.3103	6.000 BBD	20 %	5.0 %	8.0 %
10.1-100 kW _p	0.3615	0.4435	0.2794	5.340 BBD	20 %	5.0 %	8.0 %
100.1-1,000 kW _p	0.2722	0.3340	0.2104	3.840 BBD	20 %	5.0 %	8.0 %
over 1,000 kW _p	0.2813	0.3630	0.1997	3.120 BBD	20 %	5.0 %	8.0 %
PV ground mounted	0.2298	0.2820	0.1777	3.120 BBD	20 %	5.0 %	8.0 %
Impact of varied assumptions			Rooftop PV s	system 10.1 - 1	00 kWp		
4% interest rate on debt financing	0.3615	0.4435	0.2794	5.340 BBD	20 %	4 %	8.31 %
6% interest rate on debt financing	0.3615	0.4435	0.2794	5.340 BBD	20 %	6 %	7.77 %
70% share of debt financing	0.3615	0.4435	0.2794	5.340 BBD	30 %	5 %	6.00 %
60% share of debt financing	0.3615	0.4435	0.2794	5.340 BBD	40 %	5 %	4.60 %

Source: GSEC Ltd. 2017, p.198 (modified figures) FIT rate **FIT rate** Average FIT period 1 period 2 Assumed Assumed (vear 1-10) (63% of Share of Svstem rate over investment interest Interest

	debt financing	0.0010	0.4400	0.2754	5.0 - 0 DDD	20 /0	0 /8	1.11 /6	
	70% share of debt financing	0.3615	0.4435	0.2794 Price	5.340 BBD	for F	v fľ	6.00%	EC Ltd.
Moving towards a sustainable worl	60% share of debt financing	0.3615	0.4435	0.2794	5.340 BBD	40 %	5 %	4.60 %	10uu05

System	Average FIT rate over the entire period	FIT rate period 1 (year 1-10) in BBD/ kWh	FIT rate period 2 (63% of period 1 for year 11-20)	Assumed investment cost in BBD/kWp	Share of equity assumed	Assumed interest on debt financing	Interest earned on equity in %
Impact of varied assumptions							
Basic wind turbine	0.1860	0.2400	0.1320	4372	20 %	5 %	8.00 %
4% interest rate on debt financing	0.1860	0.2400	0.1320	4372	20 %	4 %	8.26 %
6% interest rate on debt financing	0.1860	0.2400	0.1320	4372	20 %	6 %	7.71 %
70% share of debt financing	0.1860	0.2400	0.1320	4372	30 %	5 %	5.95 %
60% share of debt financing	0.1860	0.2400	0.1320	4372	40 %	5 %	4.56 %

Source: GSEC Ltd. 2017, p.198 (modified figures)

Assumptions for Wind FIT

Prof. Dr. Olav Hohmeyer

Capacity

reference Output (A year Investme

kW_n

- Rotor m

Nacelle

Tower n

Balance

Financi

Operatio maintena Duration period

construc Duration

Cost of fi equipmer

partial eq replacem Cost of s equipme

Useful life

Prof. Dr. Olav Hohmeyer

Draft final report Draft final report Page 200 of 264 Page 204 of 269

GSEC Ltd.

Barbados

- Capacity factor of reference site:
- Output AC to the grid in kWh/kW:
- Investment cost per kW:
- O&M costs per year:
- Duration of construction:
- Interest during construction:
- Replacement of rotor module after:
- Replacement cost of rotor module:
- Replacement of drive train after:
- Replacement cost of drive train:
- Useful project life:

3,496
4,732 BBD
129 BBD/a
6 months
5%/a
10 years
826BBD/kW
15 years
608 BBD/kW
20 years +

39.9%

ameter	Unit	Assumed value	Reason for the assumed value
actor of site	%	39.9	Average capacity factor for Barbados seven wind zones according to Rogers 2015
C to grid) per	kWh/kW _p	3,496	Output of reference plant with average capacity factor (see above)
t cost per	BBD/kW	4732	Cost according to NREL 2014 and 2016a plus 25% adder for higher cost in Barbados
odule	BBD/kW	825	Cost according to NREL 2014 and 2016a plus 25% adder for higher cost in Barbados
nodule	BBD/kW	1942	Cost according to NREL 2014 and 2016a plus 25% adder for higher cost in Barbados
odule	BBD/kW	591	Cost according to NREL 2014 and 2016a plus 25% adder for higher cost in Barbados
of system	BBD/kW	949	Cost according to NREL 2014 and 2016a plus 25% adder for higher cost in Barbados
cost	BBD/kW	424	Cost according to NREL 2014 and 2016a plus 25% adder for higher cost in Barbados
and ice cost	BBD/ kW*a	129	Cost according to NREL 2014 and 2016a plus 25% adder for higher cost in Barbados
f construction	Months	6	First guess for duration of construction period in Barbados.
te during on period	%/a	5	Based on the interest rate assumed for the debt financing of the overall investment.
ill first partial t replacement	years	10	Based on international experiences
st partial t replacement	BBD/kWp	826 BBD	New rotor module after 10 years
ill second lipment ent	years	15	Based on international experiences
cond partial t replacement	BBD/kWp	608 BBD	New drivetrain after 15 years
of project	years	20	International experience with lifetime of wind turbine operation (NREL 2017)

Dago 202 of 261

Prof. Dr. Olav Hohmeyer

Page 206 of 269

Table 42:Suggested first price points for wind energy in Barbados

System	Average FIT rate over the entire period	FIT rate period 1 (year 1-10) in BBD/kWh	FIT rate period 2 (55% of period 1 for year 11-20)	Assumed investmen t cost in BBD/kWp	Share of equity assume d	Assume d interest on debt financin g	Interest earned on equity before taxes in %/a
Basic wind turbine (investor owned)	0.1975	0.2549	0.1402	4732	20 %	5 %	8.00 %
Basic turbine (community owned)	0.2118	0.2733	0.1503	5205	20 %	5 %	8.00 %
Basic wind turbine investor owned plus 10% ownership for proximity	0.2075	0.2678	0.1473	4732	20 %	5 %	8.80 %
4% interest rate on debt financing	0.1975	0.2549	0.1402	4372	20 %	4 %	8.26 %
6% interest rate on debt financing	0.1975	0.2549	0.1402	4372	20 %	6 %	7.71 %
70% share of debt financing	0.1975	0.2549	0.1402	4372	30 %	5 %	5.95 %
60% share of debt financing	0.1975	0.2549	0.1402	4372	40 %	5 %	4.56 %

Tinancing

Table 43: Duration of high FIT rate and resulting FIT rates in the different preferential wind areas of Barbados

Area	Installed capacity at 3 MW	Fraction of total potential	Capacity factor	Output in kWh/a per kW	Weighted capacity factor	Duration of high FIT rate in	Average FIT rate in BBD/kWh	Total FIT payments over 20
Area	Installed capacity at 3 MW	Fraction of total potential	Capacity factor	Output in kWh/a per kW installed	Weighted capacity factor	Duration of high FIT rate in months	Average FIT rate in BBD/kWh	Total FIT payments over 20 years in BBD/kW
1	57	0.125	45.3 %	3,968	5.66 %	105.7	0.1918	15,226
2	72	0.158	42.9 %	3,758	6.77 %	111.6	0.1939	14,575
3	72	0.158	41.6 %	3,644	6.57 %	115.1	0.1953	14,237
4	48	0.105	46.7 %	4,091	4.92 %	102.5	0.1909	15,623
5	48	0.105	40.5 %	3,548	4.26 %	118.2	0.1967	13,959
6	120	0.263	34.3 %	3,005	9.03 %	139.6	0.2085	12,531
7	39	0.086	31.5 %	2,759	2.69 %	152.0	0.2168	11,964
Total	456	1.000		3,496	39.90 %	120	0.1975	13,808

Assumptions and Price Point for Bagasse FIT

Installed capacity:

rds a sustainable worl

- Capacity during cane season:
- Capacity out of cane season:
- Capacity factor cane season:
- Capacity factor out of cane season:
- Total investment cost (all invest.):
- Investment power generation:
- Output per year:
- Fuel cost bagasse:
- Fuel cost river tamarind:
- Share of electricity from bagasse:
- Share of electricity from river tamarind:
- Acreage for river tamarind:
- Estimated LCOE:
- Useful project life:

25 MW							
18.6 MW	Expecte						
22.4 MW							
69.7%	Capacit cane se						
: 90.4%	Capacity of seaso						
460 mill.BBD	Total inv Output p						
175 mill BBD	Fuel cos						
	Fuel cos tamarin						
169 GWh/a	Share of bagasse						
5.77 BBD/GJ	Share of tamarine						
5.49 BBD/GJ	Acreage tamarine						
24.5%							
ind: 75.5%							
29 km ²							
0.315BBD/kWh							

25 years

Parameter	Unit	Assumed value	Reason for the assumed value
ed operational life	Years	25	Personal communication Mr. Charles Simpson Barbados Cane Industry Association
ed capacity	MW	22.3	Personal communication Mr. Charles Simpson Barbados Cane Industry Association
ity available during eason	MW	18.5	Personal communication Mr. Charles Simpson
ity factor during eason	%	83 %	Personal communication Mr. Charles Simpson
ity factor during rest	%	90 %	Barbados Draft NAMA Strategy 2013
vestment cost	Million BBD	460	Personal communication Mr. Charles Simpson
per year	GWh/a	169	Personal communication Mr. Charles Simpson
osts bagasse	BBD/GJ	5.0-5.6	Personal communication Mr. Charles Simpson
osts for river	BBD/GJ	7.49	Personal communication Mr. Charles Simpson
of energy from	%	29 %	Personal communication Mr. Charles Simpson
of energy from river nd	%	71 %	Personal communication Mr. Charles Simpson
ted cost per kWh	BBD/kWh	0.28	Personal communication Mr. Charles Simpson
e required for river nd production	km²	29	Barbados Draft NAMA Strategy 2013

Source: GSEC Ltd. 2017, p.203

Assumptions and Price Point for Bagasse FIT

GSEC Ltd. Barbados

Parameter	Unit	Assumed value	Reason for the assumed value		
Expected operational life	Years	25	Personal communication Mr. Charles Simpson Barbados Cane Industry Association		
Installed capacity	MW	22.3	Personal communication Mr. Charles Simpson Barbados Cane Industry Association		
Capacity available during cane season	MW	18.5	Personal communication Mr. Charles Simpson		
Capacity factor during cane season	%	83 %	Personal communication Mr. Charles Simpson		
Capacity factor during rest of season	%	90 %	Barbados Draft NAMA Strategy 2013		
Total investment cost	Million BBD	460	Personal communication Mr. Charles Simpson		
Output per year	GWh/a	169	Personal communication Mr. Charles Simpson		
Fuel costs bagasse	BBD/GJ	5.0-5.6	Personal communication Mr. Charles Simpson		
Fuel costs for river tamarind	BBD/GJ	7.49	Personal communication Mr. Charles Simpson		
Share of energy from bagasse	%	29 %	Personal communication Mr. Charles Simpson		
Share of energy from river tamarind	%	71 %	Personal communication Mr. Charles Simpson		
Estimated cost per kWh	BBD/kWh	0.28	Personal communication Mr. Charles Simpson		
Acreage required for river tamarind production	km ²	29	Barbados Draft NAMA Strategy 2013		

Source: GSEC Ltd. 2017, p.203

Assumptions for King-Grass FIT

30

•	Interest on debt:	5%/a
•	Share of debt financing:	80%
•	Interest on equity before taxes:	8%

Investment cost per kW: 11,000 - 40,000 BBD

Investment costs per plant:

Power production per kW:

Debt pay-back time:

Capacity per pl

- Capital cost: 1,466-5,330 BBD/kW
- Fuel cost King Grass: 6.67-8.12 BBD/GJ
- Total biomass required kW and year: 123.1GJ/a
- Cost of biomass per kW*a: 820-1,000BBD/kW*a
- Useful project life: 20 years

	Fuel cost per GJ
10 years	Total biomass required year
re yeare	GJ/t dry biomass
	Total biomass required year in GJ
	Total cost of biomass p
5%/a	Cost of biomass per k

7000 kWh/a

7.4-24 mill.BBD

500, 600 and 1,000 kW

0,0,0	and yea
	Operati mainter and yea
0/10/	

rumeter	Onic	500 kW _{el}	1 MW _{el}	Low	Medium	High	
ected operational life	Years	20	20	20	20	20	Own assumption
estment cost	Million BBD	7.4	11	10	17	24	Fichtner 2016 /AR
acity	kW _{el}	500	1,000	600	600	600	Fichtner 2016 /AR
estment cost	BBD/kW	14,800.0	11,000.0	16,666.7	28,333.3	40,000.0	Fichtner 2016 /AR
al el production	kWh/a	3,503,333	7,006,667	4,204,000	4,204,000	4,204,000	Fichtner 2016 /AR
ver production per kW	kWh/kW*a	7,007	7,006.7	7,006.7	7,006.7	7,006.7	Fichtner 2016 /AR
ot pay-back period	Years	10	10	10	10	10	Own assumption (
rest on Debt in %	%	5.0 %	5.0 %	5.0 %	5.0 %	5.0 %	Own assumption (
re of debt financing	Fraction of 1	0.8	0.8	0.8	0.8	0.8	Own assumption (
rest on equity	%	8.0 %	8.0 %	8.0 %	8.0 %	8.0 %	Own assumption (
npound interest in %	%	5.6 %	5.6 %	5.6 %	5.6 %	5.6 %	Own assumption (
nuity per kW	BBD/kW	1,770.08	1,315.60	1,993.33	3,388.67	4,784.00	Resulting calculate
oital cost per kWh	BBD/kWh	0.2526	0.1878	0.2845	0.4836	0.6828	Resulting calculate
l cost per t dry biomass	BBD/t	146 BBD	146 BBD	120.00	120.00	120.00	Fichtner 2016 /AR
l cost per GJ	BBD/GJ	8,12 BBD	8,12 BBD	6,67 BBD	6,67 BBD	6,67 BBD	Fichtner 2016 /AR
al biomass required per r	Dry t/a	4,104	4,104	4,104	4,104	4,104	Fichtner 2016
t dry biomass	GJ/t dry biomass	18	18	18	18	18	Fichtner 2016
al biomass required per r in GJ	GJ	61,560	123,120	73,872	73,872	73,872	Fichtner 2016 /AR
al cost of biomass per a	BBD/a	500,000	1,000,000	492,480	492,480	492,480	Fichtner 2016 /AR
t of biomass per kW year	BBD/kW*a	1,000.0	1,000.0	820.8	820.8	820.8	Resulting calculati
eration and ntenance cost per kW	BBD/kW*a	1000	700	1,666.7	2,833.3	4,000.0	Resulting calculati

GSEC Ltd.

Barbados

	BBD/kWh	0.2526	0.1878	0.2845	0.4836	0.6828	Resulting calculation
	BBD/kWh	0.1427	0.1427	0.1171	0.1171	0.1171	Resulting calculation
Source:	GSEC Ltd.	20 [°] 1 ⁴ 7,	p.204	plus ^{6,23787} n	ew fig	0.57088 Ures	Resulting calculation
	BBD/kWh	0.5381	0.4304	0.6395	1.0052	1.3708	Resulting calculation
	BBD/kWh	0.3486	0.2896	0.3550	0.5215	0.6880	Resulting calculation
	Source:	BBD/kWh BBD/kWh Source: GSEC Ltd. BBD/kWh BBD/kWh	BBD/kWh 0.2526 BBD/kWh 0.1427 Source: GSEC Ltd. 200127, BBD/kWh 0.5381 BBD/kWh 0.3486	BBD/kWh 0.2526 0.1878 BBD/kWh 0.1427 0.1427 Source: GSEC Ltd. 200177, p.2004 p.2004 BBD/kWh 0.5381 0.4304 BBD/kWh 0.3486 0.2896	BBD/kWh 0.2526 0.1878 0.2845 BBD/kWh 0.1427 0.1427 0.1171 Source: GSEC Ltd. 2017, BDD/kWh p.20990, DD/23787 p.23787 BBD/kWh 0.5381 0.4304 0.6395 BBD/kWh 0.3486 0.2896 0.3550	BBD/kWh 0.2526 0.1878 0.2845 0.4836 BBD/kWh 0.1427 0.1427 0.1171 0.1171 Source: GSEC Ltd. 2017, BBD/kWh p.20387 p.23787 0.40498 BBD/kWh 0.5381 0.4304 0.6395 1.0052 BBD/kWh 0.3486 0.2896 0.3550 0.5215	BBD/kWh 0.2526 0.1878 0.2845 0.4836 0.6828 BBD/kWh 0.1427 0.1427 0.1171 0.1171 0.1171 Source: GSEC Ltd. 2001427 p.23787 0.40438 0.57088 BBD/kWh 0.5381 0.4304 0.6395 1.0052 1.3708 BBD/kWh 0.3486 0.2896 0.3550 0.5215 0.6880

Assumptions for King-Grass FIT

Parameter	Unit	New data ARMAG Farms		Assumed values			
raiainetei	Onit	500 kW _{el}	1 MW _{el}	Low	Medium	High	
Expected operational life	Years	20	20	20	20	20	Own assumption
Investment cost	Million BBD	7.4	11	10	17	24	Fichtner 2016 /ARMAG Farms
Capacity	kW _{el}	500	1,000	600	600	600	Fichtner 2016 /ARMAG Farms
Investment cost	BBD/kW	14,800.0	11,000.0	16,666.7	28,333.3	40,000.0	Fichtner 2016 /ARMAG Farms
Total el production	kWh/a	3,503,333	7,006,667	4,204,000	4,204,000	4,204,000	Fichtner 2016 /ARMAG Farms
Power production per kW	kWh/kW*a	7,007	7,006.7	7,006.7	7,006.7	7,006.7	Fichtner 2016 /ARMAG Farms
Debt pay-back period	Years	10	10	10	10	10	Own assumption (see Table 35)
Interest on Debt in %	%	5.0 %	5.0 %	5.0 %	5.0 %	5.0 %	Own assumption (see Table 35)
Share of debt financing	Fraction of 1	0.8	0.8	0.8	0.8	0.8	Own assumption (see Table 35)
Interest on equity	%	8.0 %	8.0 %	8.0 %	8.0 %	8.0 %	Own assumption (see Table 35)
Compound interest in %	%	5.6 %	5.6 %	5.6 %	5.6 %	5.6 %	Own assumption (see Table 35)
Annuity per kW	BBD/kW	1,770.08	1,315.60	1,993.33	3,388.67	4,784.00	Resulting calculations
Capital cost per kWh	BBD/kWh	0.2526	0.1878	0.2845	0.4836	0.6828	Resulting calculations
Fuel cost per t dry biomass	BBD/t	146 BBD	146 BBD	120.00	120.00	120.00	Fichtner 2016 /ARMAG Farms
Fuel cost per GJ	BBD/GJ	8,12 BBD	8,12 BBD	6,67 BBD	6,67 BBD	6,67 BBD	Fichtner 2016 /ARMAG Farms
Total biomass required per year	Dry t/a	4,104	4,104	4,104	4,104	4,104	Fichtner 2016
GJ/t dry biomass	GJ/t dry biomass	18	18	18	18	18	Fichtner 2016
Total biomass required per year in GJ	GJ	61,560	123,120	73,872	73,872	73,872	Fichtner 2016 /ARMAG Farms
Total cost of biomass per a	BBD/a	500,000	1,000,000	492,480	492,480	492,480	Fichtner 2016 /ARMAG Farms
Cost of biomass per kW and year	BBD/kW*a	1,000.0	1,000.0	820.8	820.8	820.8	Resulting calculations
Operation and maintenance cost per kW and year	BBD/kW*a	1000	700	1,666.7	2,833.3	4,000.0	Resulting calculations Source: GSEC Ltd. 2017, p.204 plus new figures

BBD/a 500,000 1,000,000 492,480 492,480 492,480 **Fossible Costs of King-Grass for FIT** 820.8

Resulting

Doromotor	Unit	New data AF	MAG Farms	As				
Parameter	Unit	500 kW _{el}	1 MW _{el}	Low	Medium	High		
Capital cost per kWh	BBD/kWh	0.2526	0.1878	0.2845	0.4836	0.6828	Resulting	
Cost of biomass per kWh	BBD/kWh	0.1427	0.1427	0.1171	0.1171	0.1171	Resulting	
O&M costs per kWh	BBD/kWh	0.1427	0.09990	0.23787	0.40438	0.57088	Resulting	
		Possible resulting FIT rates of first rough calculations						
FIT rate year 1 to 10	BBD/kWh	0.5381	0.4304	0.6395	1.0052	1.3708	Resulting	
FIT rate year 11 to 20 (25% investment cost after 10 years for replacements)	BBD/kWh	0.3486	0.2896	0.3550	0.5215	0.6880	Resulting	
Average FIT rate	BBD/kWh	0.4433	0.3600	0.4973	0.7633	1.0294	Resulting	

Source: GSEC Ltd. 2017, p.205 plus new numbers ARMAG Farms

Assumptions and Price Points for Biogas FIT (International Price Points)

GSEC Ltd	•
Barbados	7

Size of installation	FIT in BBD/kWh	Source						
	Early FIT rates for Biomass in the UK (2011-2012)							
0-250 kW	0.513	Ofgem 2017						
250-500 kW	0.474	Ofgem 2017						
500-5,000 kW	0.346	Ofgem 2017						
	Early FIT rates for Biomass	in Germany (2004-2009)						
0-150 kW	0.542	EEG 2004						
150-500 kW	0.498	EEG 2004						
500-5,000 kW	0.415	EEG 2004						
Larger than 5,000 kW	0.298	EEG 2004						
	Special tariff for anaerobic dige 2012-20	stion of manure in Germany 014						
0-75 kW	0.661	EEG 2012						
	First suggested FIT ra	ates for Barbados						
0-75 kW	0.826	German FIT rates times 1.25						
75-150 kW	0.678	German FIT rates times 1.25						
150-500 kW	0.623	German FIT rates times 1.25						
500-5,000 kW	0.519	German FIT rates times 1.25						
Larger than 5,000 kW	0.373	German FIT rates times 1.25						

Source: GSEC Ltd. 2017, p.203

Assumptions for Biogas FIT (Biogen Inc. BB)

GSEC Ltd. Barbados

Daramotor	Unit	Nev	/ data Biogen	Source of accumed value	
Falanielei	Onit	100 kW _{el}	250 kW _{el}	1 MW _{el}	Source of assumed value
Expected operational life	Years	20	20	20	Own assumption
Investment cost	Million BBD	0.56	1.25	3	Biogen Barbados
Capacity	kW _{el}	100	250	1,000	Biogen Barbados
Investment cost	BBD/kW	5,600.0	5,000.0	3,000.0	Biogen Barbados
Total el production	kWh/a	780,000	1,950,000	7,800,000	Biogen Barbados
Power production per kW	kWh/kW*a	7,800	7,800.0	7,800.0	Biogen Barbados
Debt pay-back period	Years	10	10	10	Biogen Barbados
Interest on Debt in %	%	5.0 %	5.0 %	5.0 %	Biogen Barbados
Share of debt financing	Fraction of 1	0.8	0.8	0.8	Biogen Barbados
Interest on equity	%	8.0 %	8.0 %	8.0 %	Biogen Barbados
Compound interest in %	%	5.6 %	5.6 %	5.6 %	Biogen Barbados
Annuity per kW	BBD/kW	669.76	598.00	358.80	Resulting calculations
Capital cost per kWh	BBD/kWh	0.0859	0.0767	0.0460	Resulting calculations
Fuel cost per t dry biomass	BBD/t	146 BBD	146 BBD	146 BBD	ARMAG Farms
Fuel cost per GJ	BBD/GJ	8,11 BBD	8,11 BBD	8,11 BBD	Resulting calculations
Gas (CH4)/t biomass)	m3/t dry matter	301	301	301	Biogen Barbados
Gas in GJ/t dry biomass	GJ/t dry biomass	9.7524	9.7524	9.7524	Resulting calculations
Total biomass required per year	Dry t/a	599.9	1,499.6	5,998.5	Resulting calculations
GJ/t dry biomass	GJ/t dry biomass	18	18	18	Fichtner 2016 /ARMAG Farms
Total biomass required per year in GJ	GJ	10,797	26,993	107,973	Resulting calculations
Total cost of biomass per a	BBD/a	87,578	218,946	875,784	Resulting calculations
Cost of biomass per kW and year	BBD/kW*a	875.8	875.8	875.8	Resulting calculations
Operation and maintenance cost per kW and year	BBD/kW*a	468	468	468	Resulting calculations

Source: Biogen Inc. Barbados 2017

10,101

20,000 107,070

107,070 Tiobalang balbalation

Peremeter	Unit	Nev	v data Biogen	Source of ecoursed value				
Falameter	Onit	100 kW _{el}	250 kW _{el}	1 MW _{el}	Source of assumed value			
Capital cost per kWh	BBD/kWh	0.0859	0.0767	0.0460	Resulting calculations			
Cost of biomass per kWh	BBD/kWh	0.1123	0.1123	0.1123	Resulting calculations			
O&M costs per kWh	BBD/kWh	0.0600	0.06000	0.06000	Resulting calculations			
	P	Possible resulting FIT rates of first rough calculations						
FIT rate year 1 to 10	BBD/kWh	0.2581	0.2489	0.2183	Resulting calculations			
FIT rate year 11 to 20 (25% investment cost after 10 years for replacements)	BBD/kWh	0.1937	0.1914	0.1838	Resulting calculations			
Average FIT rate	BBD/kWh	0.2259	0.2202	0.2010	Resulting calculations			

Source: Biogen Inc. Barbados 2017

1

Possible 100% RE Target Scenarios Ordered by Cost of Electricity

GSEC Ltd. Barbados

	Avarage LCOE of 100% RE	E Targe	et Scena	rios (in BBI	D/kWh)			
4	Waste to energy gasification only							
Ŋ	100% RE PV and storage alone							
က	King grass gasification only							
\sim	Bagasse and river tamarind only							
15	100% RE / Wind / PV / Bagasse / WTE gas							
16	100% RE / Wind / PV / King Grass / Bagasse / WTE gasification							
-	New diesel only (base line)						I	
13a	100% RE / Wind / PV / King Grass max / WTE combustion							
100	100% RE / Wind / PV / King Grass / Bagasse / WTE gasification							
10	100% RE / Wind / PV / WTE gas							
0	100% RE / Wind / PV / Bagasse							
∞	100% RE / Wind / PV / King Grass							
12	100% RE / Wind / PV / King Grass / WTE gas							
4	100% RE / Wind / PV / Bagasse / WTE combustion							
17	100% RE / Wind / PV / King Grass / Bagasse / WTE combustion							
9	100% RE Wind and storage alone							
<u>1</u> 0	100% RE / Wind / PV / King Grass low cost / WTE combustion							
\sim	100% RE Wind and PV plus storage							
÷	100% RE / Wind / PV / Solid waste combustion							
		0	0,1	0,2	0,3	0,4	0,5	
		0	0,1	0,2	0,0	Source		20

Prof. Dr. Olav Hohmeyer 100% RE Target Scenarios Draft final report Ordered by Cost of Electricity

GSEC Ltd. Barbados

	O and the	
	Scenario	LCOE
No	Name	BBD/ kWh
1	100% RE / Wind / PV / Solid waste combustion	0.3883
-	7 100% RE Wind and PV plus storage	0.3999
1;	100% RE / Wind / PV / King Grass / WTE combustion	0.4004
(100% RE Wind and storage alone	0.4013
1	100% RE / Wind / PV / King Grass / Bagasse / WTE combustion	0.4128
14	100% RE / Wind / PV / Bagasse / WTE combustion	0.4143
12	2 100% RE / Wind / PV / King Grass / WTE gas	0.4209
	100% RE / Wind / PV / King Grass	0.4212
	100% RE / Wind / PV / Bagasse	0.4233
1	0 100% RE / Wind / PV / WTE gas	0.4356
18	3 100% RE / Wind / PV / King Grass / Bagasse / WTE gasification / WTE combustion	0.4361
13	a 100% RE / Wind / PV / King Grass / WTE combustion	0.4386
	New diesel only (base line)	0.4495
1	100% RE / Wind / PV / King Grass / Bagasse / WTE gasification	0.4584
1	5 100% RE / Wind / PV / Bagasse / WTE gas	0.4614
2	2 Bagasse and river tamarind only	0.4810
	3 King grass gasification only	0.4886
	5 100% RE PV and storage alone	0.5100
	Waste to energy gasification only	0.5126

Source: GSEC Ltd. 2017, p. 77

Transition Pathways to Four Favourable 100% Target Scenarios (Capacities in MW)

Transition Pathways to Four Favourable 100% Target Scenarios (Production in GWh/a)

GSEC Ltd. Barbados

GSEC Ltd. Barbados

Thank You for Your Attention

Time for Questions and for Discussion of Assumptions...

Moving towards a sustainable world

GSEC Ltd. Barbados

Transition Pathways to Four Favourable 100% Target Scenarios (Target Year 2035)

GSEC Ltd. Barbados

Scenario / Wind year 2011														
		Year	Annual power demand	LCOE	Wi	nd	Ρ	v	King	Grass	Bagasse and river tamarind combustion		Solid wate combustion	
No	Name			BBD/ kWh	MW	GWh/ a	MW	GWh/ a	MW	GWh/ a	MW	GWh/ a	MW	GWh/a
		2015	950	\frown	0		10	19					0	
11	100% RE / Wind / PV / WTE combustion	2020	1050	0.3664	25	114	55	113					5	34
		2025	1150	0.3002	105	481	125	258					11	74
		2030	1250	0.3123	185	847	195	403					11	74
		2035	1350	0.3883	265	1213	265	547					11	74
13	100% RE /	2015	950		0	0	10	19	0	0			0	0
		2020	1050	0.3696	20	92	65	134	2	5			5	34
	Wind / PV / King Grass / WTE	2025	1150	0.3253	90	412	120	248	10	30			11	74
	combustion	2030	1250	0.3161	160	733	175	36 [.]	18	75			11	74
		2035	1350	0.4004	232	1062	232	47)	26	120			11	74
		2015	950		0		10	1:)	0	0			0	
	100% RE /	2020	1050	0.3749	20	92	50	103	2	5			5	34
13 a	Wind / PV / King Grass / WTF	2025	1150	0.3354	80	366	100	206	14	45			11	74
	combustion	2030	1250	0.3451	140	641	150	310	27	150			11	74
		2035	1350	0.4331	200	916	200	413	40	300	/		11	74
	100% RE / Wind / PV /	2015	950		0	0	10	19		\mathcal{I}	0	0	0	0
	Bagasse / WTE combustion	2020	1050	0.3807	20	92	65	134			25	169	Þ	34
14		2025	1150	0.3452	85	389	120	248			25	169	1	74
		2030	1250	0.3609	170	778	175	361			25	169	1	74
		2035	1350	0.4143	219	1003	219	452			25	169	11	74

Source: GSEC Ltd. 2017, p. 89

Prof. Dr. Olav Hohmeyer Prof. Dr. Olav Hohmeyer Prof. Dr. ansition Pathways to Four Fayourable 100% Target Scenarios (Target Year 2035)

GSEC Ltd. Barbados

						Installed capacities and annual generation									
Scenario / Wind year 2011		Year	Annual power demand	LCOE	Die Biod	sel/ liese	Stora ge volu me	Stor	rage ration	Stor pum	rage oping	Total overproduc tion			
r	No	Name			BBD/ kWh	MW	GWIY a	MWh	MW	GWh/ a	MW	GWh/ a	GWh/a		
			2015	950		239	950								
			2020	1050	0.3664	140.9	789						0		
	11	100% RE / Wind / PV / WTE combustion	2025	1150	0.3002	148.8	354	3000	150.5	60	90	80	17		
			2030	1250	0.3123	162.2	118	5000	186.3	176	220.7	202	192		
			2035	1350	0.3883	166.7	50	5000	196.8	205	307	238	400		
		100% RE / Wind / PV / King Grass / WTE combustion	2015	950		239	950	0	0	0	0	0	0		
			2020	1050	0.3696	140.2	785						0		
	13		2025	1150	0.3253	148	422						36		
			2030	1250	0.3161	155.6	164.4	5000	178	142	162.8	163	157.4		
			2035	1350	0.4004	144.8	50	5000	172.9	163	253.4	190	435		
			2015	950		239	950								
			2020	1050	0.3749	140.2	816						0		
1 a	3	100% RE / Wind / PV / King Grass / WTE combustion	2025	1150	0.3354	140.5	469						10		
			2030	1250	0.3451	135.3	168	5000	156	97	131.5	110	93		
			2035	1350	0.4331	131.6	50	5000	156.8	129	199.8	151	403		
		100% RE / Wind / PV / Bagasse / WTE	2015	950		239	950	0	0	0	0	0	0		
		combustion	2020	1050	0.3807	121.7	621						0		
	14		2025	1150	0.3452	129.9	286	5000	138.4	56	85.3	75	16		
			2030	1250	0.3609	139.4	133	5000	165	157	181.4	181	265		
			2035	1350	0.4143	151.9	50	5000	180.6	176	248.3	205	398		

Page 75 of 264

Possible 100% RE Target ScenariosGSEC Ltd.Capacities in MW and Annual Production in GWh/aBarbados

	Scenario	LCOE	Wi	ind	Ρ	v	King	Grass	Baga and tama combi	asse river arind ustion	Wa gasifi	ast cation	Solid combi	wate
No.	Name	BBD/ kWh	MW	GW h/a	MW	GW h/a	MW	GW h/a	MW	GW h/a	MW	GW h/a	MW	GW h/a
1	New diesel only (base line)	0.4495												
2	Bagasse and river tamarind only	0.4810							25	169				
3	King grass gasification only	0.4886					40	300						
4	Waste to energy gasification only	0.5126									25	200		
5	100% RE PV and storage alone	0.5100			755	1559								
6	100% RE Wind and storage alone	0.4013	505	2312										
7	100% RE Wind and PV plus storage	0.3999	286	1309	286	589								
8	100% RE / Wind / PV / King Grass	0.4212	224	1026	224	463	26	200						
9	100% RE / Wind / PV / Bagasse	0.4233	240	1099	237	485			25	169				
10	100% RE / Wind / PV / WTE gas	0.4356	265	1213	265	547					13	100		
11	100% RE / Wind / PV / Solid waste combustion	0.3883	265	1213	265	547							11	74
12	100% RE / Wind / PV / King Grass / WTE gas	0.4209	234	1071	234	483	25	110	10	67.6				
13	100% RE / Wind / PV / King Grass / WTE combustion	0.4004	232	1062	232	479	26	120					11	74
13a	100% RE / Wind / PV / King Grass / WTE combustion	0.4386	200	916	200	413	40	300					11	74
14	100% RE / Wind / PV / Bagasse / WTE combustion	0.4143	219	1002	219	425			25	169			11	74
15	100% RE / Wind / PV / Bagasse / WTE gas	0.4614	219	1002	219	425			25	169	13	100		
16	100% RE / Wind / PV / King Grass / Bagasse / WTE gasification	0.4584	212	971	212	438	25	120	10	68	13	100		
17	100% RE / Wind / PV / King Grass / Bagasse / WTE combustion	0.4128	213	975	213	440	25	120	10	68			11	74
18	100% RE / Wind / PV / King Grass / Bagasse / WTE gasification /WTE combustion	0.4361	213	975	213	440	25	120	10	68	6.5	50	5.5	37

Source: GSEC Ltd. 2017, p. 75

Draft final report

Page 76 of 264

loving towards a sustainable world

Possible 100% RE Target Scenarios Storage and Back-up in MW and GWh/a

				Insta	alled capaciti	ies and ann	ual genera	ation		
	Scenario	LCOE	Diesel/Biodiesel		Storage volume	Storage generation		Storage	pumping	Total overpr oducti on
No.	Name	BBD/ kWh	MW	GWh/a	MWh	MW	GWh/a	MW	GWh/a	GWh/a
1	New diesel only (base line)	0.4495	196.8	1350						0
2	Bagasse and river tamarind only	0.4810	177.5	1181						0
3	King grass gasification only	0.4886	156.8	1050						0
4	Waste to energy gasification only	0.5126	171.8	1154						0
5	100% RE PV and storage alone	0.5100	177.9	50	10000	196.8	661	558.8	758	259
6	100% RE Wind and storage alone	0.4013	177.3	50	10000	196.8	197	320.1	197	1012
7	100% RE Wind and PV plus storage	0.3999	175.1	50	5000	196.8	218	335.6	252	598
8	100% RE / Wind / PV / King Grass	0.4212	152.4	50	5000	182.7	184	232.7	217	389
9	100% RE / Wind / PV / Bagasse	0.4233	159.8	50	5000	190.4	188	272.2	218	453
10	100% RE / Wind / PV / WTE gas	0.4356	165.5	50	5000	196.8	193	299.7	225	560
11	100% RE / Wind / PV / Solid waste combustion	0.3883	166.7	50	5000	196.8	205	307	238	400
12	100% RE / Wind / PV / King Grass / WTE gas	0.4209	146.6	50	5000	174.9	165	256.1	192	431.6
13	100% RE / Wind / PV / King Grass / WTE combustion	0.4004	144.8	50	5000	172.9	163	253.4	190	435
13a	100% RE / Wind / PV / King Grass / WTE combustion	0.4386	131.6	50	5000	156.8	129	199.8	151	403
14	100% RE / Wind / PV / Bagasse / WTE combustion	0.4143	151.9	50	5000	180.6	176	248.3	205	370
15	100% RE / Wind / PV / Bagasse / WTE gas	0.4614	147.3	50	5000	175.4	164	241.0	191	396
16	100% RE / Wind / PV / King Grass / Bagasse / WTE gasification	0.4584	134.1	50	5000	160.0	139	219.3	162	397
17	100% RE / Wind / PV / King Grass / Bagasse / WTE combustion	0.4128	138.6	50	5000	165.2	151	228.3	176	377
18	100% RE / Wind / PV / King Grass / Bagasse / WTE gasification / WTE combustion	0.4361	136.3	50	5000	162.6	145	224.6	169	390
	ļ									

IRENA Scenario without and with Pump Storage

GSEC Ltd. Barbados

			Installed capacities and annual generation											
Scenario		LCOE	Wind		PV		Bagasse and river tamarind combustion		Diesel/ Biodiesel		Stora ge volu me	Storage generation		RE
No.	Name	BBD/ kWh	MW	GWh/ a	MW	GWh/ a	MW	GWh/ a	MW	GWh/ a	MWh	MW	GWh/ a	%
IRENA 2030	85% RE / Wind / PV / Solid biomass / 150 MWh battery storage	0.3057	155	710	155	320	18	122	123.0	156	150	126.4	51	84.4 %
IRENA 2030 mit 3 GWh PSH	95% RE / Wind / PV / Solid biomass / 3 GWh PSH	0.2884	155	710	155	320	18	122	119.7	56	3000	142	143	94.4 %